65 research outputs found

    Population Density-based Hospital Recommendation with Mobile LBS Big Data

    Full text link
    The difficulty of getting medical treatment is one of major livelihood issues in China. Since patients lack prior knowledge about the spatial distribution and the capacity of hospitals, some hospitals have abnormally high or sporadic population densities. This paper presents a new model for estimating the spatiotemporal population density in each hospital based on location-based service (LBS) big data, which would be beneficial to guiding and dispersing outpatients. To improve the estimation accuracy, several approaches are proposed to denoise the LBS data and classify people by detecting their various behaviors. In addition, a long short-term memory (LSTM) based deep learning is presented to predict the trend of population density. By using Baidu large-scale LBS logs database, we apply the proposed model to 113 hospitals in Beijing, P. R. China, and constructed an online hospital recommendation system which can provide users with a hospital rank list basing the real-time population density information and the hospitals' basic information such as hospitals' levels and their distances. We also mine several interesting patterns from these LBS logs by using our proposed system

    When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and A New Benchmark

    Full text link
    To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components -- identity- and age-related features -- in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. Code is available at http://hzzone.github.io/MTLFace.Comment: TPAMI 2022. arXiv admin note: substantial text overlap with arXiv:2103.0152

    BerDiff: Conditional Bernoulli Diffusion Model for Medical Image Segmentation

    Full text link
    Medical image segmentation is a challenging task with inherent ambiguity and high uncertainty, attributed to factors such as unclear tumor boundaries and multiple plausible annotations. The accuracy and diversity of segmentation masks are both crucial for providing valuable references to radiologists in clinical practice. While existing diffusion models have shown strong capacities in various visual generation tasks, it is still challenging to deal with discrete masks in segmentation. To achieve accurate and diverse medical image segmentation masks, we propose a novel conditional Bernoulli Diffusion model for medical image segmentation (BerDiff). Instead of using the Gaussian noise, we first propose to use the Bernoulli noise as the diffusion kernel to enhance the capacity of the diffusion model for binary segmentation tasks, resulting in more accurate segmentation masks. Second, by leveraging the stochastic nature of the diffusion model, our BerDiff randomly samples the initial Bernoulli noise and intermediate latent variables multiple times to produce a range of diverse segmentation masks, which can highlight salient regions of interest that can serve as valuable references for radiologists. In addition, our BerDiff can efficiently sample sub-sequences from the overall trajectory of the reverse diffusion, thereby speeding up the segmentation process. Extensive experimental results on two medical image segmentation datasets with different modalities demonstrate that our BerDiff outperforms other recently published state-of-the-art methods. Our results suggest diffusion models could serve as a strong backbone for medical image segmentation.Comment: 14 pages, 7 figure

    Learning Representation for Clustering via Prototype Scattering and Positive Sampling

    Full text link
    Existing deep clustering methods rely on either contrastive or non-contrastive representation learning for downstream clustering task. Contrastive-based methods thanks to negative pairs learn uniform representations for clustering, in which negative pairs, however, may inevitably lead to the class collision issue and consequently compromise the clustering performance. Non-contrastive-based methods, on the other hand, avoid class collision issue, but the resulting non-uniform representations may cause the collapse of clustering. To enjoy the strengths of both worlds, this paper presents a novel end-to-end deep clustering method with prototype scattering and positive sampling, termed ProPos. Specifically, we first maximize the distance between prototypical representations, named prototype scattering loss, which improves the uniformity of representations. Second, we align one augmented view of instance with the sampled neighbors of another view -- assumed to be truly positive pair in the embedding space -- to improve the within-cluster compactness, termed positive sampling alignment. The strengths of ProPos are avoidable class collision issue, uniform representations, well-separated clusters, and within-cluster compactness. By optimizing ProPos in an end-to-end expectation-maximization framework, extensive experimental results demonstrate that ProPos achieves competing performance on moderate-scale clustering benchmark datasets and establishes new state-of-the-art performance on large-scale datasets. Source code is available at \url{https://github.com/Hzzone/ProPos}.Comment: Accepted by TPAMI 202
    • …
    corecore